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Unlike the investigations in [l, 21 of the motion of fluid with surface sources 
and sinks of mass (injection and suction), the flow is considered here in thepre- 

sence of uniformly distributed mobile volume sources and sinks in flat and round 

channels. It is shown that far away from the inlet a self-similar solution ofthe 

system of equations of motion can be obtained. The results are applicable, for 
instance, to two-phase (vapor-liquid) streams with condensation or evaporation 

for small volume concentrations of the discrete phase and absence of phaseslip. 

1. The steady axisymmetric flow of fluid in pipes with volume sources or sinks of mass 
which move at the medium velocity, is defined by the system of equations 

$ fr”u,) + -$- (raur) = - ra $ 

where IL% and ZL~ are velocity vector components in the longitudmal and radial directions, 

x is the capacity of volume sources or sinks (x > 0 related to sinks, x < 0 to sourcesj, 
CC = 0 for a flat channel, and a = 1 for a round pipe. 

Let us consider the case of x = const. We shall seek a self-similar solution for sys- 
tem (1.1) far from the tube inlet in a form that satisfies the equation of continuity 
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ux = u ( N 
I - 2 x f’(h), j ur = 

Rx (f (V - A) 
i 2pha’2 

( 1.2) 

.X = 2 vx/UR=, k = 2a-1 RI+“, N = xR=/pv 

where R is the radius of the round pipe or width of the flat cannel, U is the meanmass 
velocity at inlet, and N is a parameter which defines the intensity of volume sources or 

sinks. 

Substituting (1.2) into the second of Eqs. (1. l), we find that aplar is independent of 
2. Then the first of Eqs. (1.1) reduces to the ordinary differential equation 

Boundary conditions for the considered problem are of the form 

limb,, fh-aia = 0, lim,_$“D 2 = 0, f (1) = 1, f’ (1) = 0 (1.4) 

The first and third conditions imply that the radial velocity component at the axis and 

the channel wall vanishes, while the second and fourth conditions imply, respectively,that 
the axial velocity component is symmetric and vanishes at tile wall. 

let us consider the solution of the boundary value problem (1.3), (1.4) when parame- 

ter N is very small or very great. 

2, When 1 N J < 1 the form of function f (h) can be determined by the method of 
perturbations. Expanding f and k in series in powers of e , 

f = f. + efl + 0 (Ed), + = k, + ek, + 0 (e2) (E = +) (2.1) 

and substituting formulas (2.1) into ( 1.3), (1.4), we obtain a system of equations for f,, 
and fr with boundary conditions 

(h’f;)’ = k,, (h%“) = k, - fo’2 - hf,,” + fofo” (2.2) 
limA,gfih-al2 = 0, limA_gfinMs = 0, fi (1) = 1 - i, fi’ (1) = 0, i = 0,l 

The solution of problem (2.2) yields 

a=0 (2.3) 

The presence of volume sources and sinks of mass results in the deviation of the flow 

from the Poiseuille flow which is defined by the two first terms un Eqs. (2.3). In com- 

parison with the latter, its axial velocity profile is more prolate in the case of low inten- 
sity sinks (N > 0) , and in the case of sources (N < 0) it is more filled. The dimen- 

sionless pressure gradient k is defined by formulas 

k = -3 _t 3/,N for a = 0, k = -4 $ ‘IaN for a = 1 (2.4) 

It follows from these that when N > 0 the rate of pressure drop is lower and for N < 
0 it is more rapid. Thus the volume sources of mass increase and sinks decrease the 
over-all hydraulic resistance of channels. 

3, To find the solution of Zq. (1.3) when N 9 t (intensive sinks are considered) we 
use the method of joining asymptotic expansions. We seek the external expansion far 
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from the channel walls in the form of series 

f = fo + eh -i- 0 (4, - = - 

Substituting in (1.3) for f and k their expressions (3.1) and equating terms of like po- 
wers of 8, we obtain 

f0 I2 - (f. - h) fo” = co, 2P&’ - flf0” - (f0 - h) fl” = Cl (3.2) 

System (3.2) with boundary conditions 

fi (0) =1 0, fi’ {O) =O, fi {1) = 1 - i, i = 0,1 

satisfies formulas 
f = h + r/z &C,h, c, = t (3.3) 

The constant C, must be determined by the matching with the inner expansion. To de- 
rive the latter we introduce new variables and set k equal to the first term of external 

expansion. As the result we can rewrite Eq. (1.3) with an accuracy to within 8 in the 

form 
$” + 5rp’ = cprp” - ‘p’2 + 1 (3.4) 

l-h 
+,, &=$ 2co k=-y-$ 

In this approximation the equations for the flat and round channels are the same. The 
boundary conditions in new variables are 

cp=‘p‘sO for $,=O (3.5) 

Considering the right-hand side of (3.4) as an inhomogeneity we transform the differ- 

ential equation with conditions (3.5) to the integral equation 

(3.6) 

by using the method of variation of arbitrary constants. Equation (3.6) can be solvedby 
iterations. Constants 3 and C, are determined by the condition of joining asymptotic 
expansions far from and close to the wall 

cp (E + m) = 5 - ‘/zC, 

To estimate constants we restrict ourselves to the zero approximation. The substitution 
of tpO = E into (3.6) yields 

B= 1/2/n, C,=2trZ/n 

The dimensionless pressure gradient k, determined by formula (1.3), now becomes 

k=N/2$21/2N/n 

which shows that intensive sinks (N > 1) induce pressure increase along the channel. 
The derived solution indieates that the flow pattern in pipes is similar to that of the 

flow in the boundary layer. The axial velocity profile at the core of the stream tends 

to be uniform, while close to the walls there is a thin boundary layer of constant thick- 
ness of order 1 / Jfz. 

Note that the region of existence of self-similar solutions is semi-infinite and bounded 
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by the cross section where the flow rate vanishes, which in the case of sources corresponds 
to X>2/N andinthatofsinksto -X<2/N. 
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A general solution of the problem of desalinization of soil containing rapidly 
soluble salts is given. The salts are initially nonuniformly distributed, and it 
is assumed that they pass instantaneously from the solid phase to the solution. 

A condition of the third kind is postulated at the soil surface, reflecting the con- 

tinuity of the mass flux of the salts. 

A different approach was used in [l] to construct a solution for a particular 
case of homogeneous salinization, and the problem of uniqueness of the solu- 

tion was studied. The process of diffusion of salts in the course of washing the 

soil was also studied in [Z]. 

The mathematical formulation of the’problem has the form: 

Dcee - vcE = me,, 9 < E < E. (r) (I) 
- DC=-/- UC = UC,, E = 0 

Dee = cp (8 &, (r) 1 a~, E = E_, (t) 

Here the diffusion coefficient D, rate of filtration u, porosity m and concentration cn 
of the wash water are all assumed constant; to (T) = uz / m denotes the front of the flow 
of water, E is the coordinate counted from the soil surface, F is time, c (E, r) is the 
concentration of the solution in motion and q (6) is an arbitrarily prescribed functionof 

the initial bulk salinity of the soil. The latter function is subjected to the usual con- 

straints imposed on the original of a Laplace transform. 
Introducing the dimensionless variables z, t and the functions u (5, t) , we can reduce 

the problem (1) to the form 

%c = Utt o<x<t,u,-u/2=0, x=0 

us + u / 2 = f (t) exp (-t / 4), x = t 

(2) 

(3) 

VE 2% 
2=- 

D' 
t=- 

mD ’ 


